1 **a**
$$2x^3y^3(3x-5y)$$

c
$$5x^2y^2(5-2x+3y)$$

b
$$7a^3b^2(3b^3+5a^2)$$

2 a
$$(x+3)(x+4)$$

c
$$(x-5)(x-6)$$

e
$$(x-9)(x+2)$$

$$g (x-8)(x+5)$$

b
$$(x+7)(x-2)$$

d
$$(x-8)(x+3)$$

f
$$(x+5)(x-4)$$

h
$$(x+7)(x-4)$$

3 **a**
$$(6x-7y)(6x+7y)$$

$$c 2(3a-10bc)(3a+10bc)$$

b
$$(2x - 9y)(2x + 9y)$$

4 a
$$(x-1)(2x+3)$$

c
$$(2x+1)(x+3)$$

e
$$(5x+3)(2x+3)$$

b
$$(3x+1)(2x+5)$$

d
$$(3x-1)(3x-4)$$

f
$$2(3x-2)(2x-5)$$

5 a
$$\frac{2(x+2)}{x-1}$$

$$\mathbf{c} = \frac{x+2}{x}$$

$$e \frac{x+3}{x}$$

$$\mathbf{b} = \frac{x}{x-1}$$

d
$$\frac{x}{x+5}$$

$$\mathbf{f} = \frac{x}{x-5}$$

6 a
$$\frac{3x+4}{x+7}$$

$$\mathbf{c} \qquad \frac{2-5x}{2x-3}$$

b
$$\frac{2x+3}{3x-2}$$

$$\mathbf{d} \qquad \frac{3x+1}{x+4}$$

$$7 (x+5)$$

$$8 \qquad \frac{4(x+2)}{x-2}$$

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \ne 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is ac.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$	1 Rearrange the equation so that all of
$5x^2 - 15x = 0$	the terms are on one side of the equation and it is equal to zero. Do not divide both sides by <i>x</i> as this
	would lose the solution $x = 0$.
5x(x-3)=0	2 Factorise the quadratic equation.
	5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make
	zero, at least one of the values must
	be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
b = 7, ac = 12	Work out the two factors of $ac = 12$ which add to give you $b = 7$. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the b term $(7x)$ using these two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3)=0	4 $(x + 4)$ is a factor of both terms.
So $(x+4) = 0$ or $(x+3) = 0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Solve $9x^2 - 16 = 0$ Example 3

$$9x^2 - 16 = 0$$
$$(3x + 4)(3x - 4) = 0$$

So
$$(3x + 4) = 0$$
 or $(3x - 4) = 0$

$$x = -\frac{4}{3}$$
 or $x = \frac{4}{3}$

- 1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$.
- 2 When two values multiply to make zero, at least one of the values must be zero.
- 3 Solve these two equations.

Solve $2x^2 - 5x - 12 = 0$ Example 4

$$b = -5$$
, $ac = -24$

So
$$2x^2 - 8x + 3x - 12 = 0$$

$$2x(x-4) + 3(x-4) = 0$$

$$(x-4)(2x+3) = 0$$

So $(x-4) = 0$ or $(2x+3) = 0$

$$x = 4$$
 or $x = -\frac{3}{2}$

- 1 Factorise the quadratic equation. Work out the two factors of ac = -24which add to give you b = -5. (-8 and 3)
- 2 Rewrite the b term (-5x) using these two factors.
- 3 Factorise the first two terms and the last two terms.
- 4 (x-4) is a factor of both terms.
- 5 When two values multiply to make zero, at least one of the values must be zero.
- 6 Solve these two equations.

Practice

1 Solve

a
$$6x^2 + 4x = 0$$

$$x^2 + 7x + 10 = 0$$

$$\mathbf{c} \qquad x^2 + 7x + 10 = 0$$

$$e x^2 - 3x - 4 = 0$$

$$\mathbf{g} \qquad x^2 - 10x + 24 = 0$$

$$\mathbf{i}$$
 $x^2 + 3x - 28 = 0$

$$\mathbf{k} \qquad 2x^2 - 7x - 4 = 0$$

b
$$28x^2 - 21x = 0$$

$$\mathbf{d} \qquad x^2 - 5x + 6 = 0$$

$$\mathbf{f} \qquad x^2 + 3x - 10 = 0$$

h
$$x^2 - 36 = 0$$

$$\mathbf{j} \qquad x^2 - 6x + 9 = 0$$

$$1 \qquad 3x^2 - 13x - 10 = 0$$

2 Solve

a
$$x^2 - 3x = 10$$

$$x^2 + 5x = 24$$

$$e x(x+2) = 2x + 25$$

$$\mathbf{g} \qquad x(3x+1) = x^2 + 15$$

b
$$x^2 - 3 = 2x$$

d
$$x^2 - 42 = x$$

f
$$x^2 - 30 = 3x - 2$$

h $3x(x-1) = 2(x+1)$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$x^{2} + 6x + 4 = 0$$

$$(x+3)^{2} - 9 + 4 = 0$$

$$(x+3)^{2} - 5 = 0$$

$$(x+3)^{2} = 5$$

$$x+3 = \pm\sqrt{5}$$

$$x = \pm\sqrt{5} - 3$$
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$

- 1 Write $x^2 + bx + c = 0$ in the form $\left(x + \frac{b}{2}\right)^2 \left(\frac{b}{2}\right)^2 + c = 0$
- 2 Simplify.
- 3 Rearrange the equation to work out *x*. First, add 5 to both sides.
- 4 Square root both sides. Remember that the square root of a value gives two answers.
- 5 Subtract 3 from both sides to solve the equation.
- 6 Write down both solutions.

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$$2x^{2} - 7x + 4 = 0$$

$$2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$$

$$2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] + 4 = 0$$

$$2\left(x - \frac{7}{4}\right)^{2} - \frac{49}{8} + 4 = 0$$

$$2\left(x - \frac{7}{4}\right)^{2} - \frac{17}{8} = 0$$

- 1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
- 2 Now complete the square by writing $x^2 \frac{7}{2}x$ in the form $\left(x + \frac{b}{2a}\right)^2 \left(\frac{b}{2a}\right)^2$
- 3 Expand the square brackets.
- 4 Simplify.

(continued on next page)

$$2\left(x - \frac{7}{4}\right)^2 = \frac{17}{8}$$

$$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$$

$$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$

$$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$

So
$$x = \frac{7}{4} - \frac{\sqrt{17}}{4}$$
 or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$

- 5 Rearrange the equation to work out
 - x. First, add $\frac{17}{8}$ to both sides.
- 6 Divide both sides by 2.
- 7 Square root both sides. Remember that the square root of a value gives two answers.
- 8 Add $\frac{7}{4}$ to both sides.
- 9 Write down both the solutions.

Practice

3 Solve by completing the square.

$$x^2 - 4x - 3 = 0$$

$$x^2 - 4x - 3 = 0$$
$$x^2 + 8x - 5 = 0$$

$$2x^2 + 8x - 5 = 0$$

b
$$x^2 - 10x + 4 = 0$$

d
$$x^2 - 2x - 6 = 0$$

$$\mathbf{f} \qquad 5x^2 + 3x - 4 = 0$$

4 Solve by completing the square.

a
$$(x-4)(x+2) = 5$$

b
$$2x^2 + 6x - 7 = 0$$

$$x^2 - 5x + 3 = 0$$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$a = 1, b = 6, c = 4$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$$

$$x = \frac{-6 \pm \sqrt{20}}{2}$$

$$x = \frac{-6 \pm 2\sqrt{5}}{2}$$

$$x = -3 \pm \sqrt{5}$$

So
$$x = -3 - \sqrt{5}$$
 or $x = \sqrt{5} - 3$

- 1 Identify a, b and c and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it.
- 2 Substitute a = 1, b = 6, c = 4 into the formula.
- 3 Simplify. The denominator is 2, but this is only because a = 1. The denominator will not always be 2.
- 4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
- 5 Simplify by dividing numerator and denominator by 2.
- **6** Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

$$a = 3, b = -7, c = -2$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{7 \pm \sqrt{73}}{6}$$

So
$$x = \frac{7 - \sqrt{73}}{6}$$
 or $x = \frac{7 + \sqrt{73}}{6}$

1 Identify a, b and c, making sure you get the signs right and write down the formula.

Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it.

2 Substitute a = 3, b = -7, c = -2 into the formula.

3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2.

Write down both the solutions.

Practice

5 Solve, giving your solutions in surd form.

a
$$3x^2 + 6x + 2 = 0$$

b
$$2x^2 - 4x - 7 = 0$$

6 Solve the equation $x^2 - 7x + 2 = 0$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

7 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Hint

Get all terms onto one side of the equation.

Extend

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.

a
$$4x(x-1) = 3x-2$$

b
$$10 = (x+1)^2$$

c
$$x(3x-1)=10$$

1 **a**
$$x = 0$$
 or $x = -\frac{2}{3}$

$$x = -5 \text{ or } x = -2$$

e
$$x = -1$$
 or $x = 4$

$$g x = 4 ext{ or } x = 6$$

i
$$x = -7 \text{ or } x = 4$$

$$k x = -\frac{1}{2} or x = 4$$

2 **a**
$$x = -2$$
 or $x = 5$

c
$$x = -8 \text{ or } x = 3$$

e
$$x = -5 \text{ or } x = 5$$

$$\mathbf{g}$$
 $x = -3 \text{ or } x = 2\frac{1}{2}$

b
$$x = 0 \text{ or } x = \frac{3}{4}$$

d
$$x = 2 \text{ or } x = 3$$

$$f = x = -5 \text{ or } x = 2$$

h
$$x = -6 \text{ or } x = 6$$

i
$$x = 3$$

1
$$x = -\frac{2}{3}$$
 or $x = 5$

b
$$x = -1 \text{ or } x = 3$$

d
$$x = -6 \text{ or } x = 7$$

$$f x = -4 \text{ or } x = 7$$

h
$$x = -\frac{1}{3}$$
 or $x = 2$

3 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$

c
$$x = -4 + \sqrt{21}$$
 or $x = -4 - \sqrt{21}$ **d** $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$

e
$$x = -2 + \sqrt{6.5}$$
 or $x = -2 - \sqrt{6.5}$

3 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$

d
$$x = 1 + \sqrt{7}$$
 or $x = 1 - \sqrt{7}$

e
$$x = -2 + \sqrt{6.5}$$
 or $x = -2 - \sqrt{6.5}$ **f** $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$

$$x = \frac{5 + \sqrt{13}}{2}$$
 or $x = \frac{5 - \sqrt{13}}{2}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$ **b** $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$

5 **a**
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

b
$$x = 1 + \frac{3\sqrt{2}}{2} \text{ or } x = 1 - \frac{3\sqrt{2}}{2}$$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

$$7 x = \frac{-3 + \sqrt{89}}{20} \text{ or } x = \frac{-3 - \sqrt{89}}{20}$$

8 **a**
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$

b
$$x = -1 + \sqrt{10}$$
 or $x = -1 - \sqrt{10}$

$$x = -1\frac{2}{3} \text{ or } x = 2$$

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$

Solve the simultaneous equations $y - x + 1$ and $x + y - 13$		
$x^{2} + (x+1)^{2} = 13$ $x^{2} + x^{2} + x + x + 1 = 13$ $2x^{2} + 2x + 1 = 13$	 Substitute x + 1 for y into the second equation. Expand the brackets and simplify. 	
$\begin{vmatrix} 2x^2 + 2x - 12 = 0 \\ (2x - 4)(x + 3) = 0 \end{vmatrix}$	3 Factorise the quadratic equation.	
So x = 2 or x = -3	4 Work out the values of x .	
Using $y = x + 1$ When $x = 2$, $y = 2 + 1 = 3$ When $x = -3$, $y = -3 + 1 = -2$	5 To find the value of y, substitute both values of x into one of the original equations.	
So the solutions are $x = 2$, $y = 3$ and $x = -3$, $y = -2$		
Check: equation 1: $3 = 2 + 1$ YES and $-2 = -3 + 1$ YES	6 Substitute both pairs of values of x and y into both equations to check your answers.	
equation 2: $2^2 + 3^2 = 13$ YES and $(-3)^2 + (-2)^2 = 13$ YES		

Example 2 Solve 2x + 3y = 5 and $2y^2 + xy = 12$ simultaneously.

$$x = \frac{5 - 3y}{2}$$

$$2y^{2} + \left(\frac{5 - 3y}{2}\right)y = 1$$

$$2y^2 + \left(\frac{5-3y}{2}\right)y = 12$$

$$2y^2 + \frac{5y - 3y^2}{2} = 12$$

$$4y^2 + 5y - 3y^2 = 24$$

$$y^2 + 5y - 24 = 0$$

$$(y+8)(y-3) = 0$$

So $y = -8$ or $y = 3$

So
$$y = -8$$
 or $y = 3$

Using
$$2x + 3y = 5$$

When
$$y = -8$$
, $2x + 3 \times (-8) = 5$, $x = 14.5$
When $y = 3$, $2x + 3 \times 3 = 5$, $x = -2$

So the solutions are

$$x = 14.5, y = -8$$
 and $x = -2, y = 3$

Check:

equation 1:
$$2 \times 14.5 + 3 \times (-8) = 5$$
 YES
and $2 \times (-2) + 3 \times 3 = 5$ YES
equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES

and $2 \times (3)^2 + (-2) \times 3 = 12$ YES

1 Rearrange the first equation.

2 Substitute $\frac{5-3y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.

3 Expand the brackets and simplify.

4 Factorise the quadratic equation.

5 Work out the values of y.

To find the value of x, substitute both values of y into one of the original equations.

7 Substitute both pairs of values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.

1
$$y = 2x + 1$$

 $x^2 + y^2 = 10$

2
$$y = 6 - x$$

 $x^2 + y^2 = 20$

3
$$y=x-3$$

 $x^2+y^2=5$

4
$$y = 9 - 2x$$

 $x^2 + y^2 = 17$

5
$$y = 3x - 5$$

 $y = x^2 - 2x + 1$

6
$$y = x - 5$$

 $y = x^2 - 5x - 12$

$$7 y = x + 5$$
$$x^2 + y^2 = 25$$

8
$$y = 2x - 1$$

 $x^2 + xy = 24$

10
$$2x + y = 11$$

 $xy = 15$

Extend

11
$$x-y=1$$

 $x^2+y^2=3$

12
$$y-x=2$$

 $x^2 + xy = 3$

1
$$x = 1, y = 3$$

 $x = -\frac{9}{5}, y = -\frac{13}{5}$

2
$$x = 2, y = 4$$

 $x = 4, y = 2$

3
$$x = 1, y = -2$$

 $x = 2, y = -1$

4
$$x = 4, y = 1$$

 $x = \frac{16}{5}, y = \frac{13}{5}$

5
$$x = 3, y = 4$$

 $x = 2, y = 1$

6
$$x = 7, y = 2$$

 $x = -1, y = -6$

7
$$x = 0, y = 5$$

 $x = -5, y = 0$

8
$$x = -\frac{8}{3}, y = -\frac{19}{3}$$

 $x = 3, y = 5$

9
$$x = -2, y = -4$$

 $x = 2, y = 4$

10
$$x = \frac{5}{2}, y = 6$$

 $x = 3, y = 5$

11
$$x = \frac{1+\sqrt{5}}{2}, y = \frac{-1+\sqrt{5}}{2}$$

 $x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$

12
$$x = \frac{-1 + \sqrt{7}}{2}, y = \frac{3 + \sqrt{7}}{2}$$

 $x = \frac{-1 - \sqrt{7}}{2}, y = \frac{3 - \sqrt{7}}{2}$

Quadratic inequalities

A LEVEL LINKS

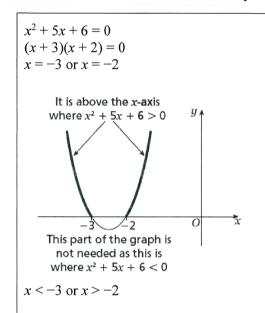
Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions)

Key points

- First replace the inequality sign by = and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

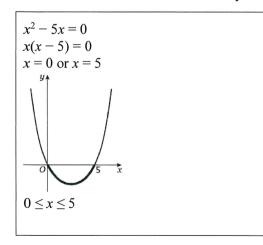
Examples

Example 1 Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$



- 1 Solve the quadratic equation by factorising.
- 2 Sketch the graph of y = (x + 3)(x + 2)
- 3 Identify on the graph where $x^2 + 5x + 6 > 0$, i.e. where y > 0
- Write down the values which satisfy the inequality $x^2 + 5x + 6 > 0$

Example 2 Find the set of values of x which satisfy $x^2 - 5x \le 0$



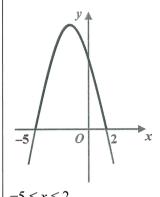
- 1 Solve the quadratic equation by factorising.
- 2 Sketch the graph of y = x(x 5)
- 3 Identify on the graph where $x^2 5x \le 0$, i.e. where $y \le 0$
- Write down the values which satisfy the inequality $x^2 5x \le 0$

Example 3 Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$

$$-x^{2} - 3x + 10 = 0$$

$$(-x + 2)(x + 5) = 0$$

$$x = 2 \text{ or } x = -5$$



- 1 Solve the quadratic equation by factorising.
- 2 Sketch the graph of y = (-x + 2)(x + 5) = 0
- 3 Identify on the graph where $-x^2 3x + 10 \ge 0$, i.e. where $y \ge 0$
- 3 Write down the values which satisfy the inequality $-x^2 3x + 10 \ge 0$

Practice

- 1 Find the set of values of x for which $(x + 7)(x 4) \le 0$
- 2 Find the set of values of x for which $x^2 4x 12 \ge 0$
- 3 Find the set of values of x for which $2x^2 7x + 3 < 0$
- 4 Find the set of values of x for which $4x^2 + 4x 3 > 0$
- 5 Find the set of values of x for which $12 + x x^2 \ge 0$

Extend

Find the set of values which satisfy the following inequalities.

- $6 x^2 + x \le 6$
- 7 x(2x-9) < -10
- 8 $6x^2 \ge 15 + x$

1
$$-7 \le x \le 4$$

2
$$x \le -2 \text{ or } x \ge 6$$

$$3 \frac{1}{2} < x < 3$$

4
$$x < -\frac{3}{2} \text{ or } x > \frac{1}{2}$$

5
$$-3 \le x \le 4$$

6
$$-3 \le x \le 2$$

7
$$2 < x < 2\frac{1}{2}$$

8
$$x \le -\frac{3}{2} \text{ or } x \ge \frac{5}{3}$$